Predicting Customer Churn: Extreme Gradient Boosting with Temporal Data
نویسنده
چکیده
Accurately predicting customer churn using large scale time-series data is a common problem facing many business domains. The creation of model features across various time windows for training and testing can be particularly challenging due to temporal issues common to time-series data. In this paper, we will explore the application of extreme gradient boosting (XGBoost) on a customer dataset with a wide-variety of temporal features in order to create a highly-accurate customer churn model. In particular, we describe an effective method for handling temporally sensitive feature engineering. The proposed model was submitted in the WSDM Cup 2018 Churn Challenge and achieved first-place out of 575 teams.
منابع مشابه
Bagging and Boosting Classification Trees to Predict Churn
In this paper, bagging and boosting techniques are proposed as performing tools for churn prediction. These methods consist of sequentially applying a classification algorithm to resampled or reweigthed versions of the data set. We apply these algorithms on a customer database of an anonymous U.S. wireless telecom company. Bagging is easy to put in practice and, as well as boosting, leads to a ...
متن کاملMachine-Learning Techniques for Customer Retention: A Comparative Study
Nowadays, customers have become more interested in the quality of service (QoS) that organizations can provide them. Services provided by different vendors are not highly distinguished which increases competition between organizations to maintain and increase their QoS. Customer Relationship Management systems are used to enable organizations to acquire new customers, establish a continuous rel...
متن کاملManaging Churn to Maximize Profits
Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. Please do not copy or distribute without explicit permission of the authors. Abstract Customer defection or churn is a widespread phenomenon that threatens fir...
متن کاملPredicting Customer Churn Using CLV in Insurance Industry
Today, increased level of customer awareness caused themto access to the other suppliers easily and they can get their servicesfrom the competitors with similar or even better quality and same price.Therefore, focusing on customers and preventing them to leave, has beenthe most important strategy for any company. Researches have shownthat retaining former customers is cheaper than attracting ne...
متن کاملADTreesLogit model for customer churn prediction
In this paper, we propose ADTreesLogit, a model that integrates the advantage of ADTrees model and the logistic regression model, to improve the predictive accuracy and interpretability of existing churn prediction models. We show that the overall predictive accuracy of ADTreesLogit model compares favorably with that of TreeNet®, a model which won the Gold Prize in the 2003 mobile customer chur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.03396 شماره
صفحات -
تاریخ انتشار 2018